GRAPHING WITH ABSOLUTE VALUE

The ABSOLUTE VALUE FUNCTION is often written as a piecewise defined function using the definition of absolute value:

$$\left| x \right| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

THINK about this, it is important to know how to apply this definition.

EX. Graph f(x) = |x| by writing it as a piecewise defined function first.

EX. Graph f(x) = |x| - x by using the definition of |x| and writing f(x) as a piecewise defined function first.

You try. Graph
$$f(x) = \frac{|x|}{x}$$

GRAPHING
$$y = |f(x)|$$

To graph the absolute value of an argument other than just x we can proceed in two different ways.

- 1) Rewrite the function as a piecewise defined function, removing the absolute value bars.
- 2) Use the graph of f(x).
- (1) Removing the absolute value bars. EX: Graph y = |2x+1|

Rewriting as a piecewise defined function, $y = \begin{vmatrix} 2x+1 \end{vmatrix} = \begin{cases} 2x+1 & \text{if } 2x+1 \ge 0 \\ -(2x+1) & \text{if } 2x+1 < 0 \end{cases}$ which

simplifies to y =
$$\begin{cases} 2x+1 & \text{if } x \ge -\frac{1}{2} \\ -2x-1 & \text{if } x < -\frac{1}{2} \end{cases}$$

(2) Using the graph of f(x).

If we apply the definition of the absolute value to the expression |f(x)| we get

 $\left| f(x) \right| = \begin{cases} f(x) & \text{if} \quad f(x) \ge 0 \quad \text{(the original } f \text{ unctionwhere the graph was above the } x - axis) \\ -f((x) & \text{if} \quad f(x) < 0 \quad \text{(the ref lection of the original } f \text{ unctionwhere the graph was below the } x - axis) \end{cases}$

EX: Given the graph of y=f(x) below, graph y = |f(x)|

Since the outcome of absolute value is always greater than or equal to zero, your final graph should all reside *above or on* the x-axis.