100 points

Show all work neatly. EXACT answers unless specified.

Solutions

(1) Given the vectors $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j}$, find the following:

a) || u || =
$$\sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$

b) $\mathbf{u} + \mathbf{v}$

d) The angle between u and v

$$\cos \frac{\vec{u} \cdot \vec{V}}{\|\vec{u}\| \|\vec{V}\|} = \frac{-2}{10\sqrt{2}} = \frac{-1}{5\sqrt{2}}$$

0= cos (5/2) × 98° reasonable)

e) The direction angle of v (exact)

0=180+tan(言)を143.1°

tan"(一意) x-369" f) Find a value for b such that < b,2> is orthogonal to $\sqrt{b=3/2}$ < b,2> < -4,3> = 0 -4b+6=0

g) Find a value for c such that < 8,c> is parallel to \mathbf{v} __C= - \mathbf{G}

h) If PQ is a representative of v where P=(3,-1), find the coordinates of point Q.

(2) Two forces act on an object as shown. Find the magnitude and the direction of the resultant.

(exact and approx.) (10 pts)
$$\overrightarrow{f_1} = \langle 7 \cos 50^\circ, 7 \sin 50^\circ \rangle = \langle -7 \frac{3}{2}, \frac{7}{2} \rangle$$
10 lbs.
$$\overrightarrow{F_2} = \langle 0, -10 \rangle$$

blowing directly northward at a rate of 50 mph, what is the actual speed and direction of the airplane?

$$\overrightarrow{R} = \overrightarrow{P} + \overrightarrow{W} \qquad \overrightarrow{P} = \langle 450 \cos(35^\circ, 450 \sin(35^\circ) \rangle \\
= \langle -225/\overline{2}, 225/\overline{2} + 50 \rangle \qquad = \langle 225/\overline{2}, 225/\overline{2} \rangle \\
= \langle -225/\overline{2}, 225/\overline{2} + 50 \rangle \qquad = \langle 225/\overline{2}, 225/\overline{2} \rangle \\
= \langle -225/\overline{2}, 225/\overline{2} + 50 \rangle \qquad = \langle 0, 50 \rangle \\
= \langle -225/\overline{2}, 225/\overline{2} + 50 \rangle \qquad = \langle 0, 50 \rangle \\
= \langle -225/\overline{2} + 50 \rangle \qquad = \langle 0, 50 \rangle \\
= \langle -225/\overline{2} + 50 \rangle \qquad = \langle -225/\overline{2} + 50 \rangle + \langle -225/\overline{2} + \langle$$

(3) An airplane is traveling at a constant airspeed of 450 mph in the direction N45°W. If wind is

(5) Given the vectors w and v below, find w + v

(6) Given the point $(5, 7\pi/4)$ in polar coordinates, find the rectangular representation.

$$\left(\frac{5/2}{2}, -\frac{5\sqrt{2}}{2}\right)$$

(7) Given the point $\left(-1, \sqrt{3}\right)$ in rectangular coordinates, find two different polar representations;

one with r > 0, the other with r < 0.

$$(2, \frac{2\pi}{3})$$
 other answers $(-2, -\frac{\pi}{3})$ possible.

(8) Convert to rectangular coordinates: r secθ=4

$$r \cdot \frac{1}{\cos \theta} = 4$$

$$r \cdot \frac{1}{\cos \theta} = 4$$

$$r = 4\cos \theta$$

$$r^2 = 4r\cos \theta$$

$$x^2 + y^2 = 4x$$

Graph the polar curve: r =

(4,0)

SIn30=-1

(11) Carefully sketch the graph of $9x^2 + 4y^2 - 72x + 8y + 112 = 0$, and find the following desired information. Label at least 2 points on your graph and show scale. (11 points)

VERTICES: (4,2)(4,-4) FOCI: (4,-1±15)

$$\frac{(x-4)^2}{4} + \frac{(y+1)^2}{9} = 1$$

Center (4,-1) Foci: $C^2=a^2-b^2=9-4=5$

(12) Carefully sketch the graph of $2x^2 + 8y + 4x - 14 = 0$, and find the following desired information. Label at least 2 points on your graph and show scale. (11 points)

(6,-1)

VERTEX:

$$(x+1)^2 = -4(y-2)$$

 $4p = -4$
 $p = -1$