MATH 5A - Review Problems (Chapter 4.9 & 5 & 6.1)

(1) Evaluate the following integrals.

(a) $\int \cos 2x dx$

(c) $\int \sec x \tan x \, dx$

1

(d) $\int_{.}^{3} 5 \, dx$

(b) $\int x \sqrt{x} dx$

- (2) Given velocity function $v(t) = t^2-4t$ (in meters per second) for a particle moving along a line, Find (a) the displacement and (b) the distance traveled over the time interval $\begin{bmatrix} 1,5 \end{bmatrix}$
- (3)A ball is thrown upward with a speed of 48 ft/sec from the edge of a cliff 432 ft above the ground. (a) Find its height above the ground t seconds later.
 - (b) When does it reach its maximum height?
- (4) Given the curve $y = x^3$ over the interval [1,2],

(a) Estimate the area under the graph of f(x) using 6 approximating rectangles and taking the sample points to be the midpoints.

- (b) Find the exact value for the area under the curve using of Riemann sums definition of an integral with right endpoints as sample points. Show details carefully.
- (c) Check your results in part (b) by computing the area using integration.
- (5) Evaluate the following integrals. Give simplified, exact answers.

(a)
$$\int_{0}^{\pi/2} \sin x \cos^{3} x \, dx \text{ (change to u's limits, required on this problem only) (f)} \quad \int_{-1}^{3} 3x \sqrt{x^{2} + 1} \, dx$$

(b)
$$\int_{-1}^{2} |x - 1| \, dx \qquad (g) \quad \int_{-3}^{3} \sqrt{9 - x^{2}} \, dx$$

(c)
$$\int \sqrt{1 + x^{2}} x^{5} \, dx \qquad (h) \quad \int \frac{x}{\sqrt{1 - 3x^{2}}} \, dx$$

(d)
$$\int_{-1}^{\sqrt{1}} (1 - 3x)^{\frac{3}{2}} \, dx \qquad (i) \quad \int_{1}^{9} \frac{\sqrt{t} - 2t^{2}}{t} \, dt$$

(e)
$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$
 (j)
$$\int (1 + \tan r)^3 \sec^2 r \, dr$$

(6) Find the area of the region bounded above by the graphs of $y=x^2$ and y=2-x and below by the x axis two ways, by (a) integrating with respect to x and (b) integrating with respect to y. Sketch

the region.

(7) Find the derivative of the function $g(x) = \int_{0}^{\cos x} \frac{1}{\sqrt{t+4}} dt$

Answers: (1) a) $\frac{1}{2}\sin 2x + C$ b) $\frac{2}{5}x^{\frac{5}{2}} + C$ c) $\sec x + c$ d) 10 (2) a) -20/3 b) 34/3 (3) $s(t) = -16t^{2} + 48t + 432, t = 3/2 \sec (4)$ (a) $\left(\frac{13}{12}\right)^{3} \cdot \frac{1}{6} + \left(\frac{15}{12}\right)^{3} \cdot \frac{1}{6} + \left(\frac{17}{12}\right)^{3} \cdot \frac{1}{6} + \left(\frac{19}{12}\right)^{3} \cdot \frac{1}{6} + \left(\frac{21}{12}\right)^{3} \cdot \frac{1}{6} + \left(\frac{23}{12}\right)^{3} \cdot \frac{1}{6}$ (b) 15/4(5) a) $\frac{1}{4}$ b) 5/2c) $\frac{1}{7}\left(t + x^{2}\right)^{\frac{7}{2}} - \frac{2}{5}\left(t + x^{2}\right)^{\frac{7}{2}} + \frac{1}{3}\left(t + x^{2}\right)^{\frac{7}{2}} + C$ d) $\frac{64}{15}$ e) $2\sin\sqrt{x} + C$ f) 0 g) $\frac{9\pi}{2}$ h) $\frac{-1}{3}\left(t - 3x^{2}\right)^{\frac{7}{2}} + C$ i) -76 j) $\frac{1}{4}(1 + \tan r)^{4} + C$ (6) (a) $\int_{0}^{1}x^{2}dx + \int_{1}^{2}(2 - x)dx$ (b) $\int_{0}^{1}(2 - y - \sqrt{y})dy = \frac{5}{6}$ (7) $\frac{-\sin x}{\sqrt{\cos x + 4}}$