```
Algebra - A
```

(1) Use the definition of absolute value to rewrite the following expressions without using the absolute value symbol.
(a) $|x-2|$
(b) $x-|x|$
(2) Solve the inequalities:
(a) $|x-3| \leq 1$
(b) $x^{2}<2 x+8$
(c) $\frac{x+1}{x-5}>0$
(3 Factor:
(a) $x^{3}(a+2 b)-27(a+2 b)$
(b) $3 x^{1 / 2}-9 x$
(c) $6 x^{2}(2 x+1)^{-1 / 3}+2 x(2 x+1)^{2 / 3}$
(d) $x^{3}+4 x^{2}+x+4$
(4) Simplify
(a) $\frac{\frac{-1}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}}}{x^{2}}$
(b) $\frac{3(1+x)^{1 / 3}-x(1+x)^{-2 / 3}}{(1+x)^{2 / 3}}$
(c) $\frac{(x+h)^{-3}-x^{-3}}{h}$

Analytic Geometry - B

(5) (a) Find the equation of the line which passes through the points (2,1) and ($-5,2$).
(b) Roughly estimate the slopes of each of the lines:

(6) (a) Given $\mathrm{g}(\mathrm{x})=\frac{1}{x} \quad$ find and simplify: $\frac{g(x)-g(a)}{x-a}$
(b) Given $f(x)=x^{2}-3 x \quad$ find and simplify: $\frac{f(x+h)-f(x)}{h}$
(7) Sketch the graph of f. You should not "just plot points".
(a) $\mathrm{f}(\mathrm{x})=\sqrt{x+2}-1$
(b) $f(x)=|x|+x$
(c) $f(x)=$
$\left\{\begin{array}{l}x^{2} \text { if } x \leq 0 \\ \sqrt{4-x^{2}} \text { if } 0<x \leq 2 \\ 2 x-3 \text { if } x>2\end{array}\right.$
Trigonometry - D
(8) Find the following trigonometric values exactly (no calculator)
(a) $\sin (7 \pi / 6)$
(b) $\tan ^{-1}(-1)$
(c) $\cos (\pi)$
(d) $\sin (-\pi / 3)$
(e) $\cot (7 \pi / 4)$
(f) $\tan (3 \pi / 2)$
(g) $\cos ^{-1}(-1 / 2)$
(h) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
(9) Graph $f(x)=-2 \cos (2 x)$
(10) Find all solutions in $[0,2 \pi): 2 \cos ^{2} x=1+\sin x$
(11) Solve: $\sin 2 x-\cos x=0$.

