Algebra - A

- (1) Use the definition of absolute value to rewrite the following expressions without using the absolute value symbol.
 - (a) lx-2l

(b) x-lxl

- (2) Solve the inequalities:
 - (a) $|x-3| \le 1$
- (b) $x^2 < 2x + 8$

(c) $\frac{x+1}{x-5} > 0$

- (3 Factor:
- (a) $x^3(a+2b) 27(a+2b)$ (b) $3x^{\frac{1}{2}} 9x$ (c) $6x^2(2x+1)^{-\frac{1}{3}} + 2x(2x+1)^{\frac{2}{3}}$ (d) x^3+4x^2+x+4

(4) Simplify

(a)
$$\frac{-1}{\sqrt{1-x^2}} + \sqrt{1-x^2}$$

- (b) $\frac{3(1+x)^{\frac{1}{3}} x(1+x)^{-\frac{2}{3}}}{(1+x)^{\frac{2}{3}}}$ (c) $\frac{(x+h)^{-3} x^{-3}}{h}$

Analytic Geometry - B

- (a) Find the equation of the line which passes through the points (2,1) and (-5,2). (5)
 - (b) Roughly estimate the slopes of each of the lines:

Functions - C

- (6) (a) Given g(x) = $\frac{1}{x}$ find and simplify: $\frac{g(x) g(a)}{x a}$
 - (b) Given $f(x) = x^2-3x$ find and simplify: $\frac{f(x+h)-f(x)}{f(x+h)-f(x)}$
- (7) Sketch the graph of f. You should not "just plot points".
 - (a) $f(x) = \sqrt{x+2} 1$
- (b) f(x) = |x| + x
- (c) f(x) =

$$\begin{cases} x^{2} \text{ if } x \le 0\\ \sqrt{4 - x^{2}} \text{ if } 0 < x \le 2\\ 2x - 3 \text{ if } x > 2 \end{cases}$$

Trigonometry - D

- (8) Find the following trigonometric values exactly (no calculator)
 - (a) $\sin(7\pi/6)$
- (b) $tan^{-1}(-1)$ (c) $cos(\pi)$
- (d) $\sin(-\pi/3)$

- (e) $\cot(7\pi/4)$

- (f) $\tan(3\pi/2)$ (g) $\cos^{-1}(-1/2)$ (h) $\sin^{-1}\left[-\frac{\sqrt{2}}{2}\right]$
- (9) Graph $f(x) = -2 \cos(2x)$
- (10) Find all solutions in $[0,2\pi)$: $2\cos^2 x = 1 + \sin x$
- (11) Solve: sin2x-cosx=0.